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I The strategy of expansion by regions

Starting point: (multi-)loop integral
(or other complicated integral)

F =

∫

ddk1

∫

ddk2 · · · I ,

I =
1

(k1 + p1)2 −m2
1

1

(k1 + k2 + p2)2 −m2
2

· · ·

• complicated function of internal masses mi and kinematical parameters p2i , pi · pj
• exact evaluation often hard or impossible

Exploit parameter hierarchies, e.g. large energies Q ≫ small masses m:

• expand integral in small ratios m2

Q2 : F = F0 +
m2

Q2 F1 +
(
m2

Q2

)2
F2 + . . .

• simplification achieved if expansion of integrand before integration:

I → I0 +
m2

Q2 I1 +
(
m2

Q2

)2
I2 + . . . , Fj =

∫
ddk1

∫
ddk2 · · · Ij

• expanded integrands Ij often simpler to integrate than original integrand I
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Expansion of integrand before integration?

I → I0 +
m2

Q2
I1 +

(
m2

Q2

)2

I2 + . . . , Fj =

∫

ddk1

∫

ddk2 · · · Ij

But:

⋆ integrand I is function of loop momenta: I = I(k1, k2, . . .)

⋆ loop-momentum components kµi can take any values (large, small, mixed, . . .)

⋆ expansions of integrand may break down for certain values of k1, k2, . . .

⋆ naive integrations of expanded integrand may generate new singularities

→֒ Need sophisticated methods of asymptotic expansions.
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Simple example: large-momentum expansion

p

m m

k k

k + p

F =

∫
Dk

(k + p)2 (k2 −m2)2







∫

Dk ≡
µ2ǫeǫγE

iπd/2

∫

ddk

d = 4− 2ǫ







Large momentum |p2| ≫ m2  expand in m2

p2 .

Integral is UV- and IR-finite, the exact result is known: [p2 → p2 + i0]

F =
1

p2

[

ln

(
−p2

m2

)

+ ln

(

1−
m2

p2

)]

+O(ǫ)

−−−−→
expand

1

p2



ln

(
−p2

m2

)

−
∞∑

j=1

1

j

(
m2

p2

)j


+O(ǫ)

Now assume that we could not calculate this integral exactly . . .
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Large-momentum expansion (2)
F =

∫
Dk

(k + p)2 (k2 −m2)2 p

m m

k k

k + p

Large momentum |p2| ≫ m2

→֒ expand integrand before integration:

Expansion by regions Beneke, V. Smirnov, Nucl. Phys. B 522 (1998) 321
V. Smirnov, Rakhmetov, Theor. Math. Phys. 120 (1999) 870

V. Smirnov, Phys. Lett. B 465 (1999) 226→֒ here 2 relevant regions:

• hard (h): k ∼ p ⇒
1

(k + p)2 (k2 −m2)2
→ 1

(k + p)2

(
1

(k2)2
+

2m2

(k2)3
+ . . .

)

• soft (s): k ∼ m ⇒
1

(k + p)2 (k2 −m2)2
→ 1

(k2 −m2)2

(
1

p2
− 2k · p

(p2)2
− k2

(p2)2
+ . . .

)

⇒ Integrate each expanded term over the whole integration domain.

⇒ Set scaleless integrals to zero (like in dimensional regularization).

Leading-order contributions:

• hard: F
(h)
0 =

∫
Dk

(k + p)2 (k2)2
=

1

p2

(
µ2

−p2

)ǫ (

−1

ǫ
+O(ǫ)

)

• soft: F
(s)
0 =

∫
Dk

p2 (k2 −m2)2
=

1

p2

(
µ2

−p2

)ǫ (
m2

−p2

)−ǫ (
1

ǫ
+O(ǫ)

)

→֒ Contributions are homogeneous functions of the expansion parameter m2

p2 .
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Large-momentum expansion (3)
F =

∫
Dk

(k + p)2 (k2 −m2)2 p

m m

k k

k + p

Leading-order contributions:

• hard: F
(h)
0 =

∫
Dk

(k + p)2 (k2)2
=

1

p2

[

−1

ǫ
+ ln

(
−p2

µ2

)]

+O(ǫ)  IR-singular!

• soft: F
(s)
0 =

1

p2

∫
Dk

(k2 −m2)2
=

1

p2

[
1

ǫ
+ ln

(
µ2

m2

)]

+O(ǫ)  UV-singular!

→֒ Singularities are cancelled in the sum of all contributions.

→֒ Exact result is approximated:

F0 = F
(h)
0 + F

(s)
0 =

1

p2
ln

(
−p2

m2

)

+O(ǫ) = F +O

(
m2

(p2)2

)

X

Hard & soft expansions to all orders in m2

p2
 exact result F reproduced X
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Expansion by regions: successfully applied to many complicated loop integrals

But: Why does it work?

• What ensures the cancellation of singularities? (IR ↔ UV!)

• Didn’t we double-count every part of the integration domain when replacing
∫
Dk I →

∫
Dk I

(h)
0 +

∫
Dk I

(s)
0 ?

• How do we have to choose the regions?

And how do we know that the chosen set of regions is complete?

• What is the role of scaleless integrals?
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II Why does the method work?

Idea based on a 1-dimensional toy example from M. Beneke (1997)
[see also: V. Smirnov, Applied Asymptotic Expansions In Momenta And Masses]

Large-momentum example
p

m m

k k

k + p

Let us show step by step how the expansions reproduce the full result.

The hard & soft expansions converge absolutely within domains Dh, Ds:

(h):
1

(k2 −m2)2
=

∑

i

T
(h)
i

1

(k2 −m2)2
within Dh =

{

k ∈ R
d : |k2| ≥ Λ2

}

,

(s):
1

(k + p)2
=

∑

j

T
(s)
j

1

(k + p)2
within Ds =

{

k ∈ R
d : |k2| < Λ2

}

,

with m2 ≪ Λ2 ≪ |p2|  Dh ∪Ds = R
d [Dh ∩Ds = ∅].

The expansions commute with integrals restricted to the corresponding domains:
∫

k∈Dh

Dk
1

(k + p)2 (k2 −m2)2
︸ ︷︷ ︸

I

=
∑

i

∫

k∈Dh

Dk T
(h)
i I ,

∫

k∈Ds

Dk I =
∑

j

∫

k∈Ds

Dk T
(s)
j I
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Transform the expression for the full integral:

p

m m

k k

k + p

F =

∫

k∈Dh

Dk I +

∫

k∈Ds

Dk I =
∑

i

∫

k∈Dh

Dk T
(h)
i I +

∑

j

∫

k∈Ds

Dk T
(s)
j I

=
∑

i

( ∫

k∈Rd

Dk T
(h)
i I −

∑

j

∫

k∈Ds

Dk T
(s)
j T

(h)
i I

)

+
∑

j

( ∫

k∈Rd

Dk T
(s)
j I −

∑

i

∫

k∈Dh

Dk T
(h)
i T

(s)
j I

)

The expansions commute: T
(h)
i T

(s)
j I = T

(s)
j T

(h)
i I ≡ T

(h,s)
i,j I

⇒ Identity: F =
∑

i

∫

Dk T
(h)
i I

︸ ︷︷ ︸

F
(h)

+
∑

j

∫

Dk T
(s)
j I

︸ ︷︷ ︸

F
(s)

−
∑

i,j

∫

Dk T
(h,s)
i,j I

︸ ︷︷ ︸

F
(h,s)

All terms are integrated over the whole integration domain R
d as prescribed for the

expansion by regions ⇒ location of boundary Λ between Dh, Ds is irrelevant.



Bernd Jantzen, Expansion by regions: foundation, generalization and automated search for regions 10/19

Identity: F =
∑

i

∫

Dk T
(h)
i I

︸ ︷︷ ︸

F
(h)

+
∑

j

∫

Dk T
(s)
j I

︸ ︷︷ ︸

F
(s)

−
∑

i,j

∫

Dk T
(h,s)
i,j I

︸ ︷︷ ︸

F
(h,s)

p

m m

k k

k + p

Additional overlap contribution F (h,s)?

F (h,s) =
∞∑

i=0

(1 + i)
∞∑

j1,j2=0

(−1)j2
(j1 + j2)!

j1! j2!

(m2)i

(p2)1+j1+j2

∫

Dk
(−2k · p)j1
(k2)2+i−j2

= 0 scaleless!

Vanishing scaleless integrals  property of dimensional regularization and
analytic continuation, not ad-hoc requirement of the formalism here!

Both UV- and IR-singularities are regularized dimensionally. Separate singularities:

F (h,s) =
1

p2

(

1

ǫUV
−

1

ǫIR

)

= 0

 cancels corresponding singularities in F (h) = 1
p2

(

− 1
ǫIR

+O(ǫ0)
)

and F (s) = 1
p2

(

1
ǫUV

+O(ǫ0)
)

.

→֒ Complete result F = F (h) + F (s) − F (h,s) is separately UV-finite and IR-finite.

⇒ F = F (h)
+ F (s) as used before.

But now this identity has been obtained without evaluating the contributions!
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More 1-loop examples

similar transformations applied  similar identities obtained

• Threshold expansion for heavy-particle pair production q

(q
2
+ p)2 = m2

(q
2
− p)2 = m2

m

m

k

q
2
+ p + k

q
2
− p− k

→֒ 3 regions with commuting expansions

• Sudakov form factor

→֒ 5 regions, 2 non-commuting expansions

m k

p21 = 0

p22 = 0

−Q2

p1 + k

p2 + k• Forward scattering with small momentum exchange

→֒ overlap contributions eventually relevant

p1

p2

p1 − r

p2 + r

k r − k

p1 − k

p2 + k

+

p1

p2

p1 − r

p2 + r

k r − k

p1 − k

p2 + r − k
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Non-commuting expansions: T (x1)T (x2) 6= T (x2)T (x1)

What changes if (some) expansions do not commute with each other?

→֒ identity with combinations only of commuting expansions.

→֒ extra terms involving pairs of non-commuting expansions, e.g.

−

∫

k∈Dx2

Dk
(

T (x2)T (x1) − T (x)T (x2)T (x1) + . . .
)

I

⇒ extra terms cancel at integrand level if

∃ commuting expansion T (x) such that T (x)T (x2)T (x1) = T (x2)T (x1)

This condition can usually be fulfilled. X

→֒ no extra terms!



Bernd Jantzen, Expansion by regions: foundation, generalization and automated search for regions 13/19

Example with relevant overlap contributions:
forward scattering with small momentum exchange

|k+|

|k−|

(h)

(1c)

(2c)(g)

~k 2
⊥

|~r⊥|

~k 2

⊥

Q

~r 2
⊥

Q

~r 2
⊥/Q ~k 2

⊥/Q
~k 2
⊥/|~r⊥|

|~k⊥| ≫ |~r⊥|

|k+|

|k−|

(cp)

(1c)

(g)

Q

|~r⊥|

|~r⊥||~k⊥|

Q

|~r⊥||~k⊥|/Q |~r⊥| Q

|~k⊥| . |~r⊥|

(2c)

p1

p2

p1 − r

p2 + r

k r − k

p1 − k

p2 + k

+

p1

p2

p1 − r

p2 + r

k r − k

p1 − k

p2 + r − k

→֒ General identity with 5 regions + overlap contributions.

→֒ Evaluation of terms depends on regularization scheme:
[restricting to leading order F0]

• Without analytic regularization:

F0 =

single expansions
︷ ︸︸ ︷

F
(1c)
0 + F

(2c)
0 + F

(g)
0

−
(
F

(1c,2c)
0 + F

(1c,g)
0 + F

(2c,g)
0

)
+ F

(1c,2c,g)
0

︸ ︷︷ ︸

relevant overlap contributions

• With analytic regularization: F0 = F
(1c)
0 + F

(2c)
0

other terms scaleless

→֒ Individual terms differ, but complete result agrees. X



Bernd Jantzen, Expansion by regions: foundation, generalization and automated search for regions 14/19

III The general formalism

Consider

• a (multiple) integral F over the domain D,

• a set of regions x1, . . . , xN ,

• for each region x an expansion T (x) converging in the subdomain Dx.

Conditions

• The convergence domains Dx cover the integration domain D.

• If some expansions do not commute with each other:

Every pair T (x2), T (x1) of non-commuting expansions is invariant under a

commuting expansion T (x): T (x)T (x2)T (x1) = T (x2)T (x1)

• All expanded integrals and series expansions are well-defined  ∃ regularization.

→֒ The following identity holds:

F =

{
single

expansions

}

−

{
double

expansions

}

+

{
triple

expansions

}

− . . .

where only those expansions are combined which commute with each other.
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The general formalism (2)

F =







single

expansions






−







double

expansions






+







triple

expansions






− . . .

︸ ︷︷ ︸

overlap contributions

with those combinations of expansions which commute with each other

Comments

• Identity is exact when expansions are summed to all orders. X

Want leading-order approximation?  drop higher-order terms.

• Identity is independent of regularization.

→֒ Individual terms change with regularization, but complete result invariant.

• Overlap contributions (→ “zero-bin subtractions”) may be relevant.

[e.g. when avoiding analytic regularization in SCET] e.g. Manohar, Stewart ’06;
Chiu, Fuhrer, Hoang, Kelley, Manohar ’09; . . .

• With usual choice of regions & regularization

→֒ overlap contributions are scaleless and vanish.

[X if single expansions yield homogeneous functions of expansion parameter with unique scalings.]
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IV Automated search for regions with asy2.m

Now we have a proof for the correctness of the method under certain conditions, but:

How can we find the relevant regions?

→֒ Try all possible regions  irrelevant contributions are scaleless.

Automated by Mathematica code asy.m: Pak, A. Smirnov, Eur. Phys. J. C 71 (2011) 1626

AlphaRepExpand[{loop momenta}, {list of denominators},

{replacements for kinematic invariants}, {scaling of parameters}]

• Expansion at level of Feynman-parameter integrals.

• Uses geometric interpretation of integral (details  paper).

• Detects non-scaleless contributions.

• Works well, but fails to detect potential and Glauber regions.
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Why does asy.m fail to detect potential regions?

Example: threshold expansion, y = m2 − q2

4 → 0:

F =

∫
Dk

(k2 −m2)
(
(k − q)2 −m2

) = µ2ǫeǫγEΓ(ǫ)

∞∫

0

dx1dx2 δ(1−
∑

xi) (x1 + x2)
2ǫ−2

[
m2(x1 − x2)2 + 4y x1x2

]ǫ

→֒ Feynman-parameter representation (where argument of δ-function may vary)

Relevant regions (specified by scaling relations for parameters x1, x2):

• hard (h): x1 ∼ y0, x2 ∼ y0

• potential (p): x1 + x2 ∼ y0, x1 − x2 ∼ y1/2  not found by asy.m!

→֒ Only regions with simple scalings xi ∼ yvi found!

New version: asy2.m B.J., A. Smirnov, V. Smirnov, arXiv:1206.0546

http://www-ttp.particle.uni-karlsruhe.de/~asmirnov/Tools-Regions.htm

automatically eliminates cancellations between parameters by

• splitting the integral at the critical points,

• performing variable transformations:
∞∫

0

dx1dx2 δ(1−
∑

xi) (x1 + x2)
2ǫ−2

[
m2(x1 − x2)2 + 4y x1x2

]ǫ =

∞∫

0

dx′1dx
′
2 δ(1−

∑
x′i) (x

′
1 + x′2)

2ǫ−2

[
m2x′2

2 + y x′1(x
′
1 + 2x′2)

]ǫ
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Regions after variable transformation:

F =

∫
Dk

(k2 −m2)
(
(k − q)2 −m2

) = µ2ǫeǫγEΓ(ǫ)

∞∫

0

dx′1dx
′
2 δ(1−

∑
x′i) (x

′
1 + x′2)

2ǫ−2

[
m2x′2

2 + y x′1(x
′
1 + 2x′2)

]ǫ

• hard (h): x′1 ∼ y0, x′2 ∼ y0

• potential (p): x′1 ∼ y0, x′2 ∼ y1/2

→֒ no cancellations  simple scalings x′i ∼ yvi ⇒ found by asy.m / asy2.m X

Usage of new features in asy2.m: option PreResolve

AlphaRepExpand[{k}, {k^2 - m^2, (k-q)^2 - m^2},

{q^2 -> 4*(m^2 - y)}, {m -> 1, y -> x}, PreResolve -> True]

• automatically detects all regions

• prints the corresponding variable transformations x1,2 → x′1,2

Glauber regions:

• cancellations like (x1 − x2)(x3 − x4)

• automatically treated by asy2.m
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V Summary

Expansion by regions: foundation and generalization B.J., JHEP 12 (2011) 076

• Conditions for regions (+ corresponding expansions & domains) established.

• Identity proven  relates exact integral to sum of expanded terms:

F =

{
single

expansions

}

−

{
double

expansions

}

+

{
triple

expansions

}

− . . .

→֒ valid independent of the choice of regularization

• Identity includes overlap contributions with multiple expansions

→֒ can be scaleless  known recipe for expansion by regions X

→֒ or relevant (depending on regularization)  generalization of known recipe.

Automated search for regions with asy2.m B.J., A. Smirnov, V. Smirnov, arXiv:1206.0546

→֒ automatic detection of the relevant regions for a given integral.

• Original algorithm of asy.m extended by automatic variable transformation.

• asy2.m reveals all relevant regions of a (multi-)loop integral – or issues a warning.

→֒ Also finds potential & Glauber regions now.

• http://www-ttp.particle.uni-karlsruhe.de/~asmirnov/Tools-Regions.htm
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Extra slides
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The expansion by regions has been applied successfully
to many complicated loop integrals.

“Real-life” example

−Q2

t, b (p1)

t, b (p2)

k2

k1

γ,W,Z

γ,W,Z

2-loop vertex integral in the high-energy limit
Denner, B.J., Pozzorini ’08

Q2 ≫ m2
t ∼ M2

W,Z

→֒ 9 relevant regions: [labelled “(k1 − k2)”]

(h− h), (1c− h), (h− 2c),

(1c− 1c), (1c− 2c), (2c− 2c),

(1c− 2uc), (2uc− 2uc), (us− 2c)

• next-to-leading-logarithmic result obtained:

α2
{
L3, L2/ǫ, L/ǫ2, 1/ǫ3

}
, where L = ln(Q2/M2

W )

• cross-checked with independent calculation based on sector decomposition
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Practical note: how to find the relevant regions

• Look where the propagators have poles:

⋆ Large-momentum example: (k + p)2 = 0 at k ∼ p, k2 −m2 = 0 at k ∼ m.

⋆ Close the integration contour of one component (e.g. k0, k±).

For all residues investigate the scaling of the components.

• Use Mellin–Barnes (MB) representations:

1
(A+B)n

= 1
Γ(n)

∫ i∞
−i∞

dz
2iπ

Γ(n+ z) Γ(−z) Bz

An+z

1. Evaluate the full (scalar) integral for generic propagator powers ni

in terms of multiple MB integrals.

2. Close MB contours involving the expansion parameter and

extract the leading contributions.

3. The individual terms can be identified with corresponding regions by their

homogeneous scaling with the expansion parameter depending on d and ni.

[A subsequent expansion by regions often yields simpler expressions for the contributions.]
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Practical note: how to find the relevant regions (2)

• Try all possible regions that you can imagine . . .

If a region does not contribute, its integrals are scaleless.

• Automated by Mathematica code asy.m, Pak, A. Smirnov, Eur. Phys. J. C 71 (2011) 1626

finds non-scaleless contributions automatically via geometric approach:

AlphaRepExpand[{k}, {(k+p)^2, k^2-m^2}, {p^2->1}, {m^2->x}]

Expansion based on Feynman-parameter integral  result: list of regions

with scalings of Feynman parameters in powers of the expansion parameter

First version of asy.m: potential & Glauber regions not found

→֒ solved by update asy2.m B.J., A. Smirnov, V. Smirnov, arXiv:1206.0546

• When a region is missing, the total result is often (but not always) more singular

than it should be.  Important cross-check, but no guarantee!
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Large-momentum expansion:
F =

∫
Dk

(k + p)2 (k2 −m2)2 p

m m

k k

k + p

Expansion to all orders in m2

p2

[(α)n = Γ(α + n)/Γ(α)]• hard:
∑

i

T
(h)
i

1

(k2 −m2)2
=

∞∑

i=0

(1 + i)
(m2)i

(k2)2+i

→֒ F (h) =
1

p2

(
µ2

−p2

)ǫ
eǫγE Γ(1 + ǫ) Γ(1− ǫ) Γ(−ǫ)

Γ(1− 2ǫ)

∞∑

i=0

(
m2

p2

)i
(2ǫ)i
i!

=
1

p2

[

−1

ǫ
+ ln

(
−p2

µ2

)

+ 2 ln

(

1− m2

p2

)]

+O(ǫ)

• soft:
∑

j

T
(s)
j

1

(k + p)2
=

∞∑

j1,j2=0

(j1 + j2)!

j1! j2!

(−2k · p)j1 (−k2)j2

(p2)1+j1+j2

→֒ F (s) =
1

p2

(
µ2

m2

)ǫ

eǫγE Γ(ǫ)
∞∑

j=0

(
m2

p2

)j
(ǫ)j

(1− ǫ)j

=
1

p2

[
1

ǫ
+ ln

(
µ2

m2

)

− ln

(

1− m2

p2

)]

+O(ǫ)

Full result F exactly reproduced:

F = F (h) + F (s) =
1

p2

[

ln

(
−p2

m2

)

+ ln

(

1− m2

p2

)]

+O(ǫ) X



Bernd Jantzen, Expansion by regions: foundation, generalization and automated search for regions 25

Example with 3 regions: threshold expansion for heavy-particle pair production
Regions analyzed in Beneke, Smirnov, NPB 522 (1998) 321

q

(q
2
+ p)2 = m2

(q
2
− p)2 = m2

m

m

k

q
2
+ p + k

q
2
− p− k

Centre-of-mass system: (qµ) = (q0,~0), (p
µ) = (0, ~p )

Close to threshold: q2 ≈ (2m)2 ⇒ q2 ≫ |p2| or q0 ≫ |~p|

F =

∫
Dk

(k2 + q0k0 − 2~p · ~k) (k2 − q0k0 − 2~p · ~k) k2

Relevant regions:

• hard (h): k0, |~k| ∼ q0 ⇒ expand
∑

j T
(h)
j in Dh =

{

k ∈ R
d : |k0| ≫ |~p| or |~k| ≫ |~p|

}

• soft (s): k0, |~k| ∼ |~p| ⇒ expand
∑

j T
(s)
j in Ds =

{

k ∈ R
d : |~k| . |k0| . |~p|

}

• potential (p): k0 ∼ ~p 2

q0
, |~k| ∼ |~p| ⇒ ∑

j T
(p)
j in Dp =

{

k ∈ R
d : |k0| ≪ |~k| . |~p|

}

[no explicit boundaries needed]

→֒ The expansion T (x) ≡
∑

j T
(x)
j converges for k ∈ Dx (x = h, s, p).

→֒ Dh ∪Ds ∪Dp = R
d [Dh ∩Ds = Dh ∩Dp = Ds ∩Dp = ∅]

→֒ The expansions T (h), T (s), T (p) commute with each other.
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Threshold expansion (2)

q

(q
2
+ p)2 = m2

(q
2
− p)2 = m2

m

m

k

q
2
+ p + k

q
2
− p− k

Similar transformations as for the large-momentum example
yield the following identity:

F = F (h) + F (s)
︸︷︷︸

=0

+ F (p) −
(

F (h,s)
︸ ︷︷ ︸

=0

+ F (h,p)
︸ ︷︷ ︸

=0

+ F (s,p)
︸ ︷︷ ︸

=0

)

+ F (h,s,p)
︸ ︷︷ ︸

=0 (scaleless)

with

F (h) = −2 eǫγE Γ(ǫ)

q2

(
4µ2

q2

)ǫ ∞∑

j=0

(

−4p2

q2

)j
(1 + ǫ)j

j! (1 + 2ǫ+ 2j)

F (p) =
eǫγE Γ( 1

2
+ ǫ)

√
π

2ǫ
√

q2 (p2 − i0)

(
µ2

p2 − i0

)ǫ
[
higher orders vanish

]

Exact result reproduced:

F (h) + F (p) = F =
eǫγE Γ(ǫ)

2p2

(
µ2

p2 − i0

)ǫ

2F1

(
1

2
, 1 + ǫ;

3

2
;− q2

4p2
− i0

)

X
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m k

p21 = 0

p22 = 0

−Q2

p1 + k

p2 + k

Example with non-commuting expansions: Sudakov form factor

Cannot always choose expansions which commute with each other.

Sudakov limit: −(p1 − p2)
2 = Q2 ≫ m2

F =

∫
Dk

(k+k− − ~k2
⊥ +Qk+)1+δ (k+k− − ~k2

⊥ +Qk−)1−δ (k+k− − ~k2
⊥ −m2)

→֒ analytic regulator δ → 0 [light-cone coordinates: 2p1,2 · k = Qk±, p1,2 · k⊥ = 0]

Regions & domains:

• hard (h): k+, k−, |~k⊥| ∼ Q ⇒ Dh =
{

k ∈ R
d : ~k2

⊥ ≫ m2
}

|k+|

|k−|

(cp)(1c)

(1c)
or (2c)

(2c)(g)

Q

m

~k 2
⊥/Q

~k 2
⊥/Q

m Q

~k 2
⊥ . m2

• 1-collinear (1c): k+ ∼ m2

Q
, k− ∼ Q, |~k⊥| ∼ m

• 2-collinear (2c): k+ ∼ Q, k− ∼ m2

Q
, |~k⊥| ∼ m

• Glauber (g): k+, k− ∼ m2

Q
, |~k⊥| ∼ m

• collinear-plane (cp): k+, k− ∼ Q, |~k⊥| ∼ m

→֒ “artificial” region to ensure ∪xDx = R
d

[No soft region needed: T (s) ≡ T (1c)T (2c)]

Most expansions commute, but T (g)T (cp) 6= T (cp)T (g) !
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Sudakov form factor (2)

T (g)T (cp) 6= T (cp)T (g)  Construct identity avoiding combination of (g) and (cp):

F = F (h) + F (1c) + F (2c) + F (g) + F (cp)

−
(

F (h,1c) + F (h,2c) + F (h,g) + F (h,cp) + F (1c,2c) + F (1c,g) + F (1c,cp) + F (2c,g) + F (2c,cp)
)

+ F (h,1c,2c) + F (h,1c,g) + F (h,1c,cp) + F (h,2c,g) + F (h,2c,cp) + F (1c,2c,g) + F (1c,2c,cp)

−
(

F (h,1c,2c,g) + F (h,1c,2c,cp)
)

+ F extra
cp←g + F extra

g←cp

Usual terms:

• no combination of (g) and (cp)

• F (g), F (cp) and all overlap contributions are scaleless (with analytic regularization)

Extra terms:

m k

p21 = 0

p22 = 0

−Q2

p1 + k

p2 + k

• F extra
cp←g involves T (cp)T (g) integrated over k ∈ Dcp,

• F extra
g←cp involves T (g)T (cp) integrated over k ∈ Dg,

plus all combinations of T (h), T (1c), T (2c), with alternating signs.

Both extra terms cancel at the integrand level,

because T (1c)T (g)T (cp) = T (g)T (cp) and similar relations hold.
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Sudakov form factor (3)
m k

p21 = 0

p22 = 0

−Q2

p1 + k

p2 + k

Both extra terms cancel at the integrand level:

F extra
g←cp =

∫

k∈Dg

Dk
(

−1 + T (h) + T (1c) + T (2c)

− T (h,1c) − T (h,2c) − T (1c,2c) + T (h,1c,2c)
)

T (g)T (cp)I

= (−1 + 3− 3 + 1)

∫

k∈Dg

Dk T (g)T (cp)I = 0

because T (x)T (g)T (cp) = T (g)T (cp) ∀x ∈ {h, 1c, 2c}.

Similarly: F extra
cp←g = 0 because T (x)T (cp)T (g) = T (cp)T (g) ∀x ∈ {1c, 2c}.

[The extra terms must cancel  otherwise dependence on boundaries of Dg, Dcp.]
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Sudakov form factor (4)

m k

p21 = 0

p22 = 0

−Q2

p1 + k

p2 + k

Omitting scaleless contributions and vanishing extra terms:

F = F (h) + F (1c) + F (2c)

Regions explicitly evaluated to all orders in m2

Q2
: [omitting O(δ) and O(ǫ)]

F (h) = − 1

Q2

(
µ2

Q2

)ǫ {
1

ǫ2
− 2

ǫ
ln

(

1− m2

Q2

)

+ ln2

(

1− m2

Q2

)

− 2Li2

(
m2

Q2

)

− π2

12

}

F (1c), F (2c) = − 1

2Q2

(
µ2

Q2

)ǫ {

±1

δ

[
1

ǫ
+ ln

Q2

m2
− ln

(

1− m2

Q2

)]

− 1

ǫ2
+

2

ǫ
ln

(

1− m2

Q2

)

+
1

2
ln2 Q2

m2
+ ln

Q2

m2
ln

(

1− m2

Q2

)

− ln2

(

1− m2

Q2

)

+ Li2

(
m2

Q2

)

+
5

12
π2

}

→֒ F (1c) and F (2c) are not separately finite for δ → 0, but their sum is.

Agreement with exact result:

F = − 1

Q2

{
1

2
ln2 Q2

m2
+ ln

Q2

m2
ln

(

1− m2

Q2

)

− Li2

(
m2

Q2

)

+
π2

3

}

X



Bernd Jantzen, Expansion by regions: foundation, generalization and automated search for regions 31

Sudakov form factor → 5-point integral with Glauber contribution

m k

p21 = 0

p22 = 0

−Q2

p1 + k

p2 + k

→

p1 + p2

q1 + q2

Q2

p21 = 0

q21 = 0

k

p1 − k

p2 + k

q2 − k

q1 + k

m

• collinear propagators “doubled”, but expansions equivalent

• same regions & domains

• “double” propagators  Glauber contribution present
(even with analytic regularization)

• leading contributions:

F
(g)
0 ∝ 1

(Q2)3

(
µ2

Q2

)ǫ (
m2

Q2

)−2−ǫ

F
(1c)
0 , F

(2c)
0 ∝ 1

(Q2)3

(
µ2

Q2

)ǫ (
m2

Q2

)−1−ǫ

F
(h)
0 ∝ 1

(Q2)3

(
µ2

Q2

)ǫ
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Example with relevant overlap contributions:
forward scattering with small momentum exchange

|k+|

|k−|

(h)

(1c)

(2c)(g)

~k 2
⊥

|~r⊥|

~k 2

⊥

Q

~r 2
⊥

Q

~r 2
⊥/Q ~k 2

⊥/Q
~k 2
⊥/|~r⊥|

|~k⊥| ≫ |~r⊥|

|k+|

|k−|

(cp)

(1c)

(g)

Q

|~r⊥|

|~r⊥||~k⊥|

Q

|~r⊥||~k⊥|/Q |~r⊥| Q

|~k⊥| . |~r⊥|

(2c)

p1

p2

p1 − r

p2 + r

k r − k

p1 − k

p2 + k

+

p1

p2

p1 − r

p2 + r

k r − k

p1 − k

p2 + r − k

Two light-like particles with large centre-of-mass energy
exchange a small momentum r:

p21 = (p1 − r)2 = p22 = (p2 + r)2 = 0

(p1 + p2)
2 = Q2 ≫ ~r 2

⊥ , r± ≈ ∓
~r 2
⊥

Q

Symmetrize integral under k ↔ r − k
→֒ avoids divergences at |k±| → ∞ under expansion.

F =
1

2

∫
Dk

k2 (r − k)2

(
1

(
(p1 − k)2

)1+δ
+

1
(
(p1 − r + k)2

)1+δ

)

×
(

1
(
(p2 + k)2

)1−δ
+

1
(
(p2 + r − k)2

)1−δ

)

Regions: same as for Sudakov form factor (scaling with m → |~r⊥|),

Domains: similar (but more involved for |~k⊥| ≫ |~r⊥|)
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Forward scattering (2) p1

p2

p1 − r

p2 + r

k r − k

p1 − k

p2 + k

+

p1

p2

p1 − r

p2 + r

k r − k

p1 − k

p2 + r − k

Same identity as for Sudakov form factor:

F = F (h) + F (1c) + F (2c) + F (g) + F (cp)

−
(

F (h,1c) + F (h,2c) + F (h,g) + F (h,cp) + F (1c,2c) + F (1c,g) + F (1c,cp) + F (2c,g) + F (2c,cp)
)

+ F (h,1c,2c) + F (h,1c,g) + F (h,1c,cp) + F (h,2c,g) + F (h,2c,cp) + F (1c,2c,g) + F (1c,2c,cp)

−
(

F (h,1c,2c,g) + F (h,1c,2c,cp)
)

With analytic regulator δ → 0: F0 = F
(1c)
0 + F

(2c)
0 [F

(h)
0 suppressed, others scaleless]

F
(1c)
0 = F

(2c)
0 =

1

2

iπ

Q2 ~r 2
⊥

(
µ2

~r 2
⊥

)ǫ
eǫγE Γ(1 + ǫ) Γ2(−ǫ)

Γ(−2ǫ)

Without analytic regularization (δ = 0): [all terms are still well-defined]

F0 = F
(1c)
0 + F

(2c)
0 + F

(g)
0 −

(

F
(1c,2c)
0 + F

(1c,g)
0 + F

(2c,g)
0

)

+ F
(1c,2c,g)
0

F
(x,...)
0 =

iπ

Q2 ~r 2
⊥

(
µ2

~r 2
⊥

)ǫ
eǫγE Γ(1 + ǫ) Γ2(−ǫ)

Γ(−2ǫ)
∀ {x, . . .} ⊂ {1c, 2c, g}

→֒ consistent results independent of regularization: 1
2
+ 1

2
= 1+ 1+ 1− (1+ 1+ 1)+ 1 X

→֒ agreement with leading-order expansion of full result
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The general formalism (details)

Identities as in the examples are generally valid, under some conditions.

Consider

• a (multiple) integral F =
∫
Dk I over the domain D (e.g. D = R

d),

• a set of N regions R = {x1, . . . , xN},

• for each region x ∈ R an expansion T (x) =
∑

j T
(x)
j

which converges absolutely in the domain Dx ⊂ D.

Conditions

•
⋃

x∈R Dx = D [Dx ∩Dx′ = ∅ ∀x 6= x′] .

• Some of the expansions commute with each other.

Let Rc = {x1, . . . , xNc} and Rnc = {xNc+1, . . . , xN} with 1 ≤ Nc ≤ N .

Then: T (x)T (x′) = T (x′)T (x) ≡ T (x,x′) ∀x ∈ Rc , x
′ ∈ R .

• Every pair of non-commuting expansions is invariant under some expansion from Rc:

∀x′1, x
′
2 ∈ Rnc, x

′
1 6= x′2, ∃x ∈ Rc : T

(x)T (x′

2)T (x′

1) = T (x′

2)T (x′

1) .

• ∃ regularization for singularities, e.g. dimensional (+ analytic) regularization.
→֒ All expanded integrals and series expansions in the formalism are well-defined.



Bernd Jantzen, Expansion by regions: foundation, generalization and automated search for regions 35

The general formalism (2)

Under these conditions, the following identity holds:
[

F (x,...) ≡
∑

j,...

∫

Dk T
(x,...)
j,... I

]

F =
∑

x ∈ R

F (x) −
〈Rc + 1〉
∑

{x′

1, x
′

2} ⊂ R

F (x′

1,x
′

2) + . . .− (−1)n
〈Rc + 1〉
∑

{x′

1, . . . , x
′

n} ⊂ R

F (x′

1,...,x
′

n) + . . .+ (−1)Nc
∑

x′ ∈ Rnc

F (x′,x1,...,xNc )

where the sums run over subsets {x′1, . . .} containing at most one region from Rnc.

Comments

• This identity is exact when the expansions are summed to all orders. X

Leading-order approximation for F  dropping higher-order terms.

• It is independent of the regularization (dim. reg., analytic reg., cut-off, infinitesimal

masses/off-shellness, . . .) as long as all individual terms are well-defined.

• Usually regions & regularization are chosen such that multiple expansions

F (x′

1,...,x
′

n) (n ≥ 2) are scaleless and vanish.

[X if each F
(x)
0 is a homogeneous function of the expansion parameter with unique scaling.]

• If ∃ F (x′

1,x
′

2,...) 6= 0  relevant overlap contributions (→ “zero-bin subtractions”).

They appear e.g. when avoiding analytic regularization in SCET. e.g. Manohar, Stewart ’06;
Chiu, Fuhrer, Hoang, Kelley, Manohar ’09; . . .



Bernd Jantzen, Expansion by regions: foundation, generalization and automated search for regions 36

Automated search for regions with asy2.m (details)

Practical question: How to find the relevant regions?

• Look where the integrand has poles or singularities.

• Extract (form of) expansion terms using Mellin–Barnes representations.

• Try all possible regions  irrelevant contributions are scaleless.

→֒ avoid double-counting of regions with equivalent expansions

→֒ automatic identification of regions easier in parametric integrals

Example: threshold expansion, y = m2 − q2

4 → 0:

F =

∫
Dk

(k2 −m2)
(
(k − q)2 −m2

) = µ2ǫeǫγEΓ(ǫ)

∞∫

0

dx1dx2 δ(1−
∑

xi) (x1 + x2)
2ǫ−2

[
m2(x1 − x2)2 + 4y x1x2

]ǫ

→֒ Feynman-parameter representation (where argument of δ-function may vary)

Regions specified by scaling relations for parameters x1, x2:

• hard (h): x1 ∼ y0, x2 ∼ y0

• potential (p): x1 + x2 ∼ y0, x1 − x2 ∼ y1/2
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Geometric approach for expansion by regions

Mathematica code asy.m: Pak, A. Smirnov, Eur. Phys. J. C 71 (2011) 1626

• Each monomial from (x1 + x2) ·
[
m2(x1 − x2)

2 + 4y x1x2

]

→֒ point in 3-dimensional vector space describing its scaling in powers of y, x1, x2.

• Calculate convex hull of these points using Qhull. http://www.qhull.org

• Facets of convex hull determine scalings xi ∼ yvi of all regions with

non-vanishing (= non-scaleless) contributions.

→֒ Hard region (x1, x2 ∼ y0) found, but potential region (x1 − x2 ∼ y1/2) not found!

New version: asy2.m B.J., A. Smirnov, V. Smirnov, arXiv:1206.0546

http://www-ttp.particle.uni-karlsruhe.de/~asmirnov/Tools-Regions.htm

performs automatic change of variables to eliminate differences like (x1 − x2):

• for x1 ≤ x2: x1 = x′1/2, x2 = x′2 + x′1/2

• for x1 ≥ x2: x2 = x′1/2, x1 = x′2 + x′1/2

∞∫

0

dx1dx2 δ(1−
∑

xi) (x1 + x2)
2ǫ−2

[
m2(x1 − x2)2 + 4y x1x2

]ǫ =

∞∫

0

dx′1dx
′
2 δ(1−

∑
x′i) (x

′
1 + x′2)

2ǫ−2

[
m2x′2

2 + y x′1(x
′
1 + 2x′2)

]ǫ
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Usage of asy2.m

For (multi-)loop integrals:

F =

∫
Dk

(k2 −m2)
(
(k − q)2 −m2

) = µ2ǫeǫγEΓ(ǫ)

∞∫

0

dx′1dx
′
2 δ(1−

∑
x′i) (x

′
1 + x′2)

2ǫ−2

[
m2x′2

2 + y x′1(x
′
1 + 2x′2)

]ǫ

AlphaRepExpand[{k}, {k^2 - m^2, (k-q)^2 - m^2},

{q^2 -> 4*(m^2 - y)}, {m -> 1, y -> x}, PreResolve -> True]

automatically detects all regions

• hard (h): x′1 ∼ y0, x′2 ∼ y0  T
(h)
0 I = (x′1 + x′2)

2ǫ−2 (m2x′2
2
)−ǫ

• potential (p): x′1 ∼ y0, x′2 ∼ y1/2  T
(p)
0 I = x′1

2ǫ−2 (m2x′2
2
+ y x′1

2
)−ǫ

and prints the corresponding variable transformations x1,2 → x′1,2.

Also for general parametric integrals:

WilsonExpand[m^2*x2^2 + y*x1*(x1+2*x2), x1+x2,

{x1, x2}, {m -> 1, y -> x}, Delta -> True]

Details of syntax & output descriptions  paper B.J., A. Smirnov, V. Smirnov ’12
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Glauber regions with asy2.m
p1 + p2

q1 + q2

Q2

p21 = 0

q21 = 0

k

p1 − k

p2 + k

q2 − k

q1 + k

m
5-point integral with simplified kinematics:

p1 = p2 = p, q1 = q2 = q, p2 = q2 = 0,

(p+ q)2 = Q2 ≫ m2

F = −µ2ǫeǫγEΓ(3 + ǫ)

∞∫

0

dx1 · · · dx5 δ(1−
∑

xi) (x1 + . . .+ x5)
1+2ǫ

[
Q2(x2 − x3)(x4 − x5) +m2x1(x1 + . . .+ x5)− i0

]3+ǫ

Glauber region present: x2 − x3 ∼ m2 or x4 − x5 ∼ m2

→֒ 2-fold variable transformation to eliminate both differences (x2 − x3)(x4 − x5)

→֒ performed automatically by asy2.m:

AlphaRepExpand[{k}, {k^2 - m^2, (p-k)^2, (p+k)^2, (q-k)^2, (q+k)^2},

{p^2 -> 0, q^2 -> 0, p*q -> Q^2/2}, {Q -> 1, m^2 -> x},

PreResolve -> True]

→֒ finds all relevant regions (including variable transformations) X

Details about correspondence between regions in xi and regions in k  paper
B.J., A. Smirnov, V. Smirnov ’12


