

KET workshop on QCD and electroweak physics at the LHC DESY, October 16-17, 2006

Two-loop electroweak next-to-leading logarithmic corrections to massless fermionic processes

Bernd Jantzen

Paul Scherrer Institut (PSI), CH-Villigen

In collaboration with A. Denner and S. Pozzorini

hep-ph/0608326 [to appear in Nucl. Phys. B]

Overview

- I Electroweak corrections at high energies
- II 2-loop next-to-leading logarithmic corrections
 - extraction of mass-singular logs at 1 and 2 loops
 - factorizable and non-factorizable contributions
 - treatment of UV singularities

III Results for massless fermionic processes

- calculation of loop integrals
- factorization & exponentiation
- comparison to existing results & applications

IV Summary

| Electroweak (EW) corrections at high energies

EW collider experiments

- today (LEP, Tevatron): energy scales $\lesssim M_{\rm W,Z}$
- upcoming colliders (LHC, ILC) \rightarrow explore TeV regime \hookrightarrow new energy domain $\sqrt{s}\gg M_{\mathrm{W}}$ becomes accessible!

EW radiative corrections at high energies $\sqrt{s}\gg M_{\mathrm{W}}$

⇒ enhanced by large Sudakov logarithms

$$\ln^2\left(rac{s}{M_{
m W}^2}
ight) \sim 25 \quad {
m at} \,\, \sqrt{s} \sim 1 \, {
m TeV}$$

Logs present in exclusive observables with only virtual W and Z bosons, but also in inclusive observables due to Bloch–Nordsieck violations

General form of EW corrections for $s\gg M_{ m W}^2$

$$\left[L = \ln\left(\frac{s}{M_{\rm W}^2}\right)\right]$$

1 loop:
$$\alpha \left[C_1^{\mathsf{LL}} \, L^2 + C_1^{\mathsf{NLL}} \, L + C_1^{\mathsf{N}^2 \mathsf{LL}} \right] + \mathcal{O} \left(\frac{M_{\mathrm{W}}^2}{s} \right)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$-17 \% \qquad +12 \% \qquad -3 \%$$

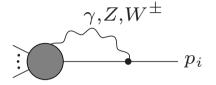
2 loops:
$$\alpha^2 \left[C_2^{\mathsf{LL}} \, \underline{L}^4 + C_2^{\mathsf{NLL}} \, \underline{L}^3 + C_2^{\mathsf{N}^2 \mathsf{LL}} \, \underline{L}^2 + C_2^{\mathsf{N}^3 \mathsf{LL}} \, \underline{L} + C_2^{\mathsf{N}^4 \mathsf{LL}} \right] + \mathcal{O} \left(\frac{M_{\mathrm{W}}^2}{s} \right) + 1.7 \% -1.8 \% +1.2 \% -0.3 \%$$

[percentages for $\sigma(u\bar{u} \to d\bar{d})$ at $\sqrt{s}=1\,{\rm TeV}$ B.J., Kühn, Penin, Smirnov '05]

Theoretical prediction with accuracy $\sim 1 \,\%$ required

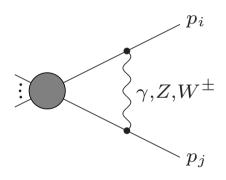
- ⇒ 2-loop corrections important
- ⇒ 2-loop LL approximation not sufficient

Origin of logarithms $\ln(s/M_{ m W}^2)$ in virtual corrections



mass-singularities from virtual gauge bosons (γ, Z, W^{\pm}) coupling to on-shell external leg

→ single logs from collinear region



special case:

gauge bosons exchanged between 2 on-shell external legs

→ double logs from soft-collinear region

For massless photons: $\log \leadsto \frac{1}{\epsilon}$ in $D = 4 - 2\epsilon$ dimensions \Rightarrow count $1/\epsilon$ poles like logs for logarithmic approximations (LL, NLL, ...)

EW 1-loop LLs & NLLs for arbitrary processes are universal

→ depend only on quantum numbers of external particles

Denner, Pozzorini '00, '01

Approaches for virtual 2-loop EW corrections at high energies

Resummation of 1-loop result to all orders:

LL for arbitrary processes

• NLL for arbitrary processes $(M_{\rm Z}=M_{\rm W})$

• N²LL for massless $f\bar{f} \to f'\bar{f}'$ $(M_{\rm Z} = M_{\rm W})$

Fadin, Lipatov, Martin, Melles '99

Melles '00, '01

Kühn, Penin, Smirnov '99, '00; Kühn, Moch, Penin, Smirnov '01

- \rightarrow split EW theory into symmetric SU(2)×U(1) and QED regime
- \hookrightarrow apply evolution equations to spontaneously broken $SU(2)\times U(1)$ EW model

Diagrammatic 2-loop calculations to check & extend resummation predictions:

• LL for fermionic form factor

• LL for arbitrary processes

angular-dependent NLLs for arbitrary processes

• complete NLL for fermionic form factor

• N^3LL for fermionic form factor $(M_Z=M_W)$

 $\hookrightarrow \mathsf{N}^3\mathsf{LL}$ for massless $f\bar{f}\to f'\bar{f}'$ $(M_\mathrm{Z}\approx M_\mathrm{W})$ via evolution equations

Melles '00; Hori, Kawamura, Kodaira '00

Beenakker, Werthenbach '00, '01

Denner, Melles, Pozzorini '03

Pozzorini '04

B.J., Kühn, Moch '03; B.J., Kühn, Penin, Smirnov '04, '05

II 2-loop next-to-leading logarithmic corrections

Goal: virtual 2-loop EW corrections for arbitrary processes in NLL accuracy

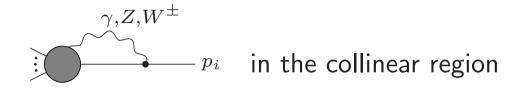
- \hookrightarrow provide better accuracy for arbitrary $2 \to n$ processes

Implement

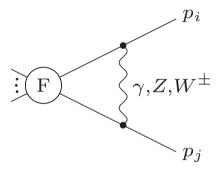
- different large kinematical invariants $|(p_i + p_j)^2| \sim Q^2 \gg M_W^2$
- ullet different heavy particle masses $M_{
 m W}^2 \sim M_{
 m Z}^2 \sim m_{
 m top}^2 \sim M_{
 m Higgs}^2$ (light masses =0)
- \Rightarrow Logs $L=\ln\left(\frac{Q^2}{M_{\rm W}^2}\right)$ and $\frac{1}{\epsilon}$ poles (from virtual photons)
 - **1 loop:** LL $\rightarrow \epsilon^{-2}$, $L\epsilon^{-1}$, L^2 , $L^3\epsilon$, $L^4\epsilon^2$; NLL $\rightarrow \epsilon^{-1}$, L, $L^2\epsilon$, $L^3\epsilon^2$
 - **2 loops:** $LL \to \epsilon^{-4}, \ L\epsilon^{-3}, \ L^2\epsilon^{-2}, \ L^3\epsilon^{-1}, \ L^4; \quad NLL \to \epsilon^{-3}, \ L\epsilon^{-2}, \ L^2\epsilon^{-1}, \ L^3$
- \Rightarrow NLL coefficients involve small logs $\ln\left(\frac{|(p_i+p_j)^2|}{Q^2}\right)$ and $\ln\left(\frac{M_{\rm Z}^2,m_{\rm top}^2,M_{\rm Higgs}^2}{M_{\rm W}^2}\right)$

Extraction of NLL mass singularities at 1 loop

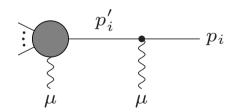
Contributions originate from



Isolate factorizable contributions:



- gauge boson momentum set to zero in tree subdiagram (F)
- soft-collinear approximation for loop vertices combined with propagators:



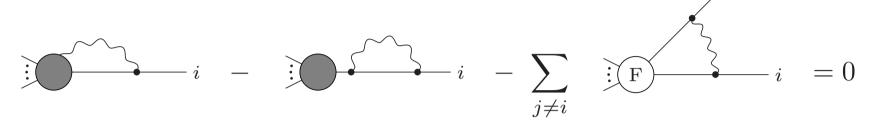
 $ip_i' \cdot i\gamma^{\mu} \rightarrow -2p_i'^{\mu}$ (for massless external fermions), extension of *eikonal approximation*, valid for soft and/or collinear gauge boson momenta

- \Rightarrow leads to contributions multiplying Born matrix elements

The factorizable contributions contain all soft and/or collinear mass singularities.

Remaining non-factorizable contributions

Contributions from collinear region:



Cancellation mechanism:

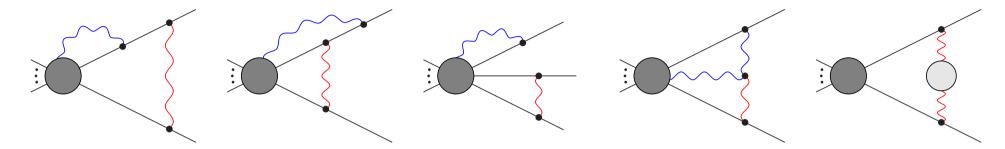
- ullet collinear vertex \propto gauge boson momentum q^{μ}
- collinear Ward identities for EW theory:

Denner, Pozzorini '00, '01

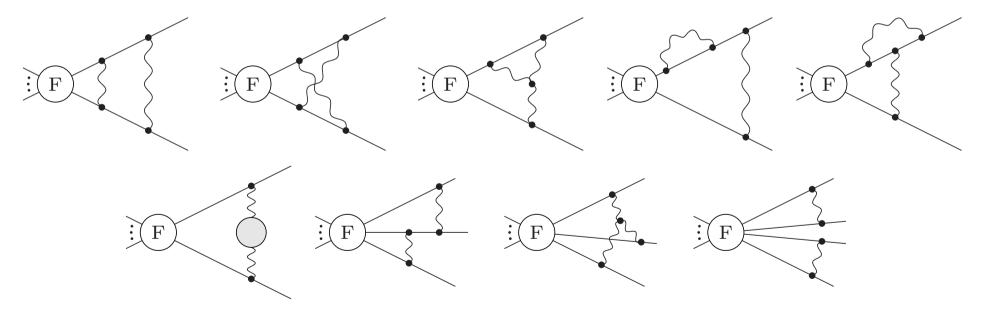
in the collinear limit

⇒ only calculation of factorizable contributions needed

Extraction of NLL mass singularities at 2 loops



Factorizable contributions:



- calculated with soft-collinear approximation and projection techniques
- remaining non-factorizable contributions vanish due to collinear Ward identities

Treatment of ultraviolet (UV) singularities & renormalization

 $\begin{array}{l} \text{UV } 1/\epsilon \text{ poles in subdiagrams with scale } \mu_{\text{loop}}^2 \\ \text{and renormalization at scale } \mu_{\text{R}}^2 \\ \end{array} \\ \end{array} \\ \Rightarrow \log \ln \left(\frac{\mu_{\text{R}}^2}{\mu_{\text{loop}}^2} \right) \\ \Rightarrow \text{ possibly NLL}$

UV subtraction: remove $1/\epsilon$ poles from UV-singular subdiagrams and counterterms Advantages:

- can use soft—collinear approximation (not valid in UV regime!) also for hard subdiagrams which produce UV NLL contributions

Renormalization:

- \bullet use couplings in Born matrix elements renormalized at $\mu_{\rm R}^2=Q^2$
 - → no counterterm contributions from Born amplitude
 - \hookrightarrow loop corrections universal & independent of inner structure of Born amplitude
- ullet renormalization of couplings in loops at arbitrary scale $\mu_{\rm R}^2$

III Results for massless fermionic processes

Evaluation of factorizable contributions

Calculate & check loop integrals with 2 independent methods:

automatized algorithm based on sector decomposition

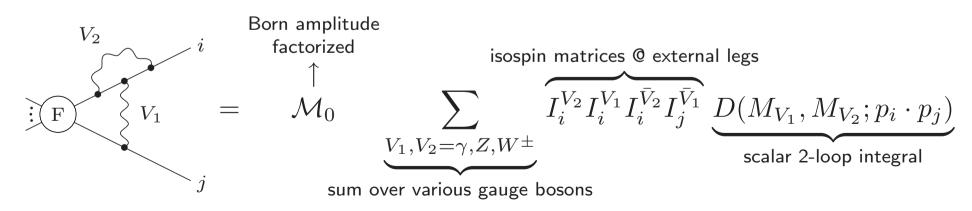
Denner, Pozzorini '04

combination of expansion by regions & Mellin–Barnes representations

Smirnov, B.J. '06 & refs. therein

 \hookrightarrow extended for different hard scales $(p_i + p_j)^2 \sim Q^2$ and soft scales $M_i^2 \sim M_W^2$

Example:



+ sum over external legs i, j

NLL result for massless fermionic processes $f_1f_2 o f_3 \cdots f_n$ up to 2 loops

$$\mathcal{M} = \mathcal{M}_0 \, F^{\mathsf{sew}} \, F^{\mathsf{Z}} \, F^{\mathsf{em}}$$

symmetric-electroweak factor: $F^{\text{sew}} = \exp$

$$F^{\text{sew}} = \exp\left[\frac{\alpha}{4\pi} F_1^{\text{sew}} + \left(\frac{\alpha}{4\pi}\right)^2 G_2^{\text{sew}}\right]$$

electromagnetic factor:

$$F^{\rm em} = \exp\left[\frac{\alpha}{4\pi} \, \Delta F_1^{\rm em} + \left(\frac{\alpha}{4\pi}\right)^2 \, \Delta G_2^{\rm em}\right]$$

terms from $M_{\rm Z} \neq M_{\rm W}$:

$$F^{\mathbf{Z}} = 1 + \frac{\alpha}{4\pi} \, \Delta F_1^{\mathbf{Z}}$$

- ullet $F^{ ext{sew}}$ equals result from symmetric $\mathsf{SU}(2){ imes}\mathsf{U}(1)$ theory with $M_\gamma=M_{
 m W}=M_{
 m Z}$
- ullet exponentiation of 1-loop terms $F_1^{\sf sew}$ and $\Delta F_1^{\sf em}$ ($\Delta F_1^{\sf Z}
 ightarrow$ no 2-loop NLLs)
- \bullet electromagnetic terms in $F^{\rm em}$ factorize and exponentiate separately
 - ⇒ separation of photonic singularities possible

Exponentiated 1-loop terms: LLs & NLLs

$$\begin{split} F_1^{\text{sew}} &= -\frac{1}{2} \left(L^2 + \frac{2}{3} L^3 \epsilon + \frac{1}{4} L^4 \epsilon^2 - 3L - \frac{3}{2} L^2 \epsilon - \frac{1}{2} L^3 \epsilon^2 \right) \sum_{i=1}^n \left(\frac{Y_i^2}{4 c_w^2} + \frac{C_i}{s_w^2} \right) \\ &+ \left(L + \frac{1}{2} L^2 \epsilon + \frac{1}{6} L^3 \epsilon^2 \right) \sum_{i=1}^n \sum_{\substack{j=1 \\ j \neq i}}^n \ln \left(\frac{-(p_i + p_j)^2}{Q^2} \right) \sum_{V = \gamma, Z, W^{\pm}} I_j^{\bar{V}} I_j^V \\ \Delta F_1^{\text{em}} &= -\frac{1}{2} \left(2 \epsilon^{-2} - L^2 - \frac{2}{3} L^3 \epsilon - \frac{1}{4} L^4 \epsilon^2 + 3 \epsilon^{-1} + 3L + \frac{3}{2} L^2 \epsilon + \frac{1}{2} L^3 \epsilon^2 \right) \sum_{i=1}^n Q_i^2 \\ &- \left(\epsilon^{-1} + L + \frac{1}{2} L^2 \epsilon + \frac{1}{6} L^3 \epsilon^2 \right) \sum_{i=1}^n \sum_{\substack{j=1 \\ j \neq i}}^n \ln \left(\frac{-(p_i + p_j)^2}{Q^2} \right) Q_i Q_j \\ \Delta F_1^{Z} &= \left(L + L^2 \epsilon + \frac{1}{2} L^3 \epsilon^2 \right) \ln \left(\frac{M_Z^2}{M_W^2} \right) \sum_{i=1}^n \left(\frac{c_w}{s_w} T_i^3 - \frac{s_w}{c_w} \frac{Y_i}{2} \right)^2 \end{split}$$

Additional 2-loop terms with 1-loop β -function coefficients: only NLLs

$$\begin{split} G_2^{\text{sew}} &= \frac{1}{6}L^3 \sum_{i=1}^n \left(\frac{Y_i^2}{4c_{\text{w}}^2} b_1^{(1)} + \frac{C_i}{s_{\text{w}}^2} b_2^{(1)} \right) \\ \Delta G_2^{\text{em}} &= \left(\frac{3}{4} \epsilon^{-3} + L \epsilon^{-2} + \frac{1}{2} L^2 \epsilon^{-1} \right) b_{\text{QED}}^{(1)} \sum_{i=1}^n Q_i^2 \\ \left[\mu_{\text{R}}^2 = M_{\text{W}}^2 \right] \end{split}$$

Comparison to existing results

- previous results for form factor and angular-dependent NLLs
 reproduced and extended
 Denner, Melles, Pozzorini '03; Pozzorini '04
- structure of symmetric-electroweak NLL corrections in complete analogy with
 Catani's formula for massless QCD

 Catani '98
- agreement with general resummation predictions based on evolution equations

 Melles '00, '01

Application to massless 4-fermion scattering

- neutral current $f\bar{f} \to f'\bar{f}'$: agreement, additional contributions $\propto s_{\rm w}^2 \ln(M_{\rm Z}^2/M_{\rm W}^2)$
- charged current $f_1 \bar{f}_2 \rightarrow f_3 \bar{f}_4$: new result

B.J., Kühn, Penin, Smirnov '05

IV Summary

Massless fermionic processes $f_1f_2 o f_3 \cdots f_n$

with different $|(p_i+p_j)^2|\gg M_{\rm W}^2$ and different masses $M_{\rm W}^2\sim M_{\rm Z}^2\sim m_{\rm top}^2\sim M_{\rm Higgs}^2$:

- complete EW NLL corrections in $D=4-2\epsilon$ dimensions
- factorizable contributions calculated with 2 independent methods:
 sector decomposition; expansion by regions & Mellin–Barnes
- non-factorizable contributions shown to vanish due to collinear Ward identities
- result expressed by exponentiated 1-loop terms and β -function coefficients
- agreement with existing results

Towards EW NLL corrections for arbitrary processes

- advantage: large parts of method are general